ThinkNotClear
  • Home
  • Categories
  • Tags
  • Archives

JEM: Your Classifier is secretely an Energy Based Model

目录

Table of Contents
  • 概述
目录

概述

已知 多类别分类任务概率写作 Usually, for a multi-class task, the probability $p(y|x)$ is written as

$$ p(y|x) = \frac{exp(f_{\theta}(x)[y])}{\sum_{y'}exp(f_{\theta}(x)[y'])} $$ 其中 $f_{\theta}(x)[y]$ 为 logits输出, where $f_{\theta}(x)[y]$ is the logits output.

作者假设 Following the definition of EBM, define the joint density $p(x, y)$ as:

$$ p(x, y) = \frac{exp(f_{\theta}(x)[y])}{Z(\theta)} $$ Hence, it's easily to derive

$$ p(x) = \sum_{y} p(x, y) = \frac{\sum_{y} exp(f_{\theta}(x)[y])}{Z(\theta)} $$

They derive a new energy function in the multi-class task. 可得到一个能量函数 $E_\theta(x) = -\log \sum_{y} exp(f_{\theta}(x)[y])$ 及对应的能量模型

因此, 优化目标函数为 Combine the energy-based model with the classifier, the objective function is

$$ \log p_\theta(x, y) = \log p_\theta(x) + \log p_\theta(y|x) $$


Published

Sep 10, 2022

Category

paper

Tags

  • EBM 1
  • generator 8
  • paper 9
  • Powered by Pelican. Theme: Elegant by Talha Mansoor