概述
- Using SDE and reverse-time SDE to extend to continous domain. 使用SDE及反向SDE,将时间T 推广到 连续域
- Generalize Score matching and Diffusion to inifinite T. 统一 score matching 和 扩散模型, 并将时间 T 推广到 无限
- Two SDEs derived from 2 Markov chain to use 两个具体的SDE, 分别来自不同的Markov chain, 其中一个是 DDPM使用的chain.
- Train like Denoising Score Matching or DDPM. Sliced Score matching also works. 训练方式与 denoising score matching/DDPM 很相似
- Inference/Generation: 1. General SDE sampler using the corresponding reverse-time SDE. 2. Propose Predictor-Corrector sampler (SDE Solver + MCMC) 生成过程 1. 使用常用的SDE数值解法, 2. 提出 用 score-based MCMC 改进
- Propose a Deterministic sampler, call “probability flow ordinary DE (ODE)”. 提出确定性采样器来生成, 好处有多
- Architecture Improvements 结构改进
- class-conditional generation, image imputation and colorization, 实现可控制生成, 基于又一个SDE。
Unified Framework
The authors proposed a unified framework generalizes score matching NCSN and DDPM
It uses Stochastic Differential Equation(SDE) SDE 中文 and reverse-time SDE (derivation English) to extend discrete T (>1000) to infinite continuous T.
The general form of SDE is: $d\boldsymbol{x} = f(\boldsymbol{x}, t) dt \;\;\;\; + G(\boldsymbol{x}, t) d\boldsymbol{w}$ Compared to the diffusion: $x_t \sim \mathcal{N}(\sqrt{1-\beta_t} x_{t-1}, \;\; \beta_t \boldsymbol{I})$
Two detailed SDEs for the framework
- Variance Exploding (VE) SDE: $dx = \sqrt{\frac{d [\sigma^2(t)]}{dt}}dw$ , derived from the Markov Chain: $x_i = x_{i-1} + \sqrt{\sigma_i^2 - \sigma_{i-1}^2} z_{i-1}$, where $z_{i-1} \sim \mathcal{N}(0, \boldsymbol{I})$ .
- Variance Preserving (VP) SDE: $dx = -1/2 \beta(t) x dt + \sqrt{\beta(t)} dw$, derived from DDPM's discrete Markov chain.
Training
Train a time-dependent score-based model Eq 7, similar to denoising score matching and also DDPM
Inference/Generation/Sampling after training
- Apply general SDE Sampler
- Propose Predictor-Corrector sampler (SDE Solver + MCMC)
Deterministic sampler
They proposed a Deterministic sampler, called "probability flow ordinary DE (ODE)"
Advantages (v.s. Stochastic sample):
- Exact likelihood computation (DDPM has its own computation, iDDPM improves the results)
- Manipulating latent representations, for image editing, such as interpolation, and temperature scaling.
- Uniquely identifiable encoding
- Efficient sampling, reduce T>1000 -> T<100.
Architecture of U-Net
In Appendix H
5 different improvents
And Exponential Moving Average
Controllable Generation
By solving a conditional reverse-time SDE.
Tasks: class-conditional generation, image imputation and colorization